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Hemidesmus indicus (L.) R. Br. (HI) and Hibiscus rosa-sinensis L. (HRS) are widely used traditional medicine. We investigated
cardioprotective effects of these plants applied for 15 min at concentrations of 90, 180, and 360 μg/mL in Langendorff-perfused
rat hearts prior to 25-min global ischemia/120-min reperfusion (I/R). Functional recovery (left ventricular developed pressure—
LVDP, and rate of development of pressure), reperfusion arrhythmias, and infarct size (TTC staining) served as the endpoints. A
transient increase in LVDP (32%–75%) occurred at all concentrations of HI, while coronary flow (CF) was significantly increased
after HI 180 and 360. Only a moderate increase in LVDP (21% and 55%) and a tendency to increase CF was observed at HRS
180 and 360. HI and HRS at 180 and 360 significantly improved postischemic recovery of LVDP. Both the drugs dose-dependently
reduced the numbers of ectopic beats and duration of ventricular tachycardia. The size of infarction was significantly decreased
by HI 360, while HRS significantly reduced the infarct size at all concentrations in a dose-dependent manner. Thus, it can be
concluded that HI might cause vasodilation, positive inotropic effect, and cardioprotection, while HRS might cause these effects
at higher concentrations. However, further study is needed to elucidate the exact mechanism of their actions.

1. Introduction

There is an increasing demand for the herbal drug treatment
for various ailments, and many plant drugs from traditional
medicine like Ayurveda are being explored globally.

Hemidesmus indicus (L.) R. Br. (Asclepiadaceae; HI)
is a twining shrub used as folk medicine and an ingre-
dient in Ayurvedic and Unani preparations. It is known
as Indian Sarsaparilla (English), Ananta, Gopasuta, Sariva
(Sanskrit), Anantamul (Hindi), Ushba Hindi (Urdu), Ush-
bahindi (Persian), and Irimusk (Sinhalese) [1]. The root
extract of HI was used for preparing herbal soft drinks
and as food during famine [2]. The plant has been used
traditionally for the treatment of blood disorders, low
digestion, anorexia, diarrhea, asthma, fever, cough, itching,
and skin diseases including leprosy [1]. Various effects of HI,
such as hypoglycemic [3], hypolipidemic [4], antioxidant,
antithrombotic [5], antiinflammatory [6], antiulcerogenic

[7], hepatoprotective [8], renoprotective [9], and neutral-
ization of viper venom [10] have been reported. It mainly
comprises saponins, tannins, hemidesmine, hemidesmol,
hemidesterol, stearoptin, pregnane glycosides, β-sitosterol,
indicusin, coumarin, volatile oils, triterpines, flavonoids, and
so forth [1, 7].

Hibiscus rosa-sinensis L. (Malvaceae; HRS) is an orna-
mental plant native to China, and found in India and
Philippines. It is called as Chinese rose, Shoe flower
(English), Arkapriya, Japapushpa (Sanskrit), Jasund (Hindi),
Angharee-hind (Persian), and Wadamal (Sinhalese) [1]. In
some regions, the flowers of HRS are eaten raw or cooked
[11] and made into a kind of pickle or used as a dye
for coloring foods, such as preserved fruits and cooked
vegetables [12, 13]. The young leaves are sometimes used
as a substitute for spinach [12, 13], while the roots are also
edible, but are fibrous, mucilaginous, and without very much
flavor [14]. In addition to its traditional value as emollient,
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demulcent, emmenagogue, antiinflammatory, refrigerant,
aphrodisiac, anodyne, and laxative, various researchers had
described the use of the flower to treat heart disorders
[1, 10, 15]. Sachdewa and Khemani [16] demonstrated
the antidiabetic activity of HRS in diabetic rats and the
effect was comparable with glibenclamide. It has been also
shown to be beneficial in fever and bronchial catarrh [16].
It is known to possess various activities like antidiarrheal,
antiphologistic, antispermatogenic, androgenic, antitumor
[16], antiestrogenic [17], antiimplantation [18, 19], wound
Healing [20], anticonvulsant [21], and so forth. It mainly
consists of flavonoids, anthocyanins, quercetin, cyanidin,
kaempferol, hydrocitric acid, and so forth [1, 22].

However, till date, no research work has been performed
to study the effects of HI and HRS in isolated heart
preparation. Hence, this study was initiated to evaluate the
potential myocardial protective effect of both the drugs in
the model of ischemia-reperfusion (I/R) injury in rat hearts
in vitro.

2. Materials and Methods

2.1. Preparation of the Extract. Standardized dry extracts of
HI and HRS (prepared as below) were kindly gifted by Rumi
herbal research institute, Chennai, India. In brief, dried roots
of HI were coarsely powdered and refluxed with 50% ethanol
by hot percolation method and extracted. The yield was
23.18% of black-brown extractives containing 2.87 mg % of
saponins and 1.62 mg % tannins, heavy metals—arsenic—
not more than (NMT) 1 parts per million (ppm), lead NMT
1 ppm, and E. coli and Salmonella were absent. Dried flowers
of HRS were coarsely powdered and refluxed with 80%
ethanol by hot percolation method and extracted. It yielded
15.6% of dark-brown extractives containing 4.16 mg %
hydrocitric acid, heavy metals—arsenic—NMT 1 ppm, lead
NMT 1 ppm, and E. coli and Salmonella were absent.

The dry extract (600 mg) was added to 15 mL of boiling
distilled water and boiled for 2 min. The decoction was
cooled and centrifuged to separate any undissolved material
and the supernatant was considered as a stock solution
containing 40 mg/mL of the extract [23]. The decoction was
prepared fresh every day.

2.2. Animals. Male adult Wistar rats (230–270 g) were used
in this study. Rats were housed under standard conditions
and supplied with drinking water and food ad libitum. All
procedures and experimental protocols were performed in
accordance with the Guide for the Care and Use of Laboratory
Animals published by the US National Institutes of Health
and approved by the Animal Health and Animal Welfare
Division of the State veterinary and Food Administration of
the Slovak Republic.

2.3. Perfusion Technique. The rats were anesthetized (sodium
pentobarbitone, 60 mg/kg, i.p.) and heparinized (500 IU,
i.p.) [24]. Hearts were excised and rapidly mounted on
the Langendorff perfusion apparatus. Retrograde perfusion
in a nonrecirculating mode was established at a constant

perfusion pressure of 70 mmHg and 37◦C. Krebs-Henseleit
buffer (KHB) gassed with 95% O2 and 5% CO2 (pH 7.4)
containing (mM) NaCl 118.0, KCl 4.7, MgSO4·7H2O 1.18,
NaHCO3 25.0, KH2PO4 1.18, CaCl2·2H2O 2.25, and glucose
11.1 was used as the perfusion medium. The perfusate was
filtered through a 5-μm porosity filter (Millipore), before it
entered the heart. An epicardial electrogram was registered
using two stainless steel electrodes, one attached to the apex
of the heart and the other to the aortic cannula.

Left ventricular (LV) pressure was measured using a
nonelastic water-filled balloon inserted into the left ventricle
via the left atrium (adjusted to obtain end-diastolic pressure
of 4–7 mmHg) and connected to a pressure transducer
(MLP844 Physiological Pressure Transducer, ADInstru-
ments). Left ventricular developed pressure (LVDP, systolic
minus diastolic pressure), maximal rate of pressure develop-
ment (+dP/dtmax) as an index of contraction, heart rate (HR;
derived from electrogram), and coronary flow (CF) were
monitored continuously. The hearts were allowed to stabilize
(15 min) before further interventions. Baseline values of
functional parameters were recorded after stabilization and
recording of the data was performed until the end of
an experiment, except for the contractile function, as the
balloon was deflated after 40 min of R. Heart function and
arrhythmias were analyzed using PowerLab/8SP Chart 5
software (ADInstruments).

Recovery of function was expressed as a percentage of
preischemic baseline values.

2.4. Experimental Protocol. The experimental protocol con-
sisted of a stabilization period (15 min), perfusion with drugs
dispersed in KHB at the required concentrations for 15 min,
global ischemia (25 min), and reperfusion period (120 min).

All animals were randomly divided to the following
groups (seven rats per group).

(1) Control (C): hearts were perfused with KHB
throughout the experiment.

(2) HI 90: hearts were perfused with HI extract at a
concentration of 90μg/mL in KHB for 15 min, prior
to ischemia and reperfusion with KHB.

(3) HI 180: hearts were perfused with HI extract at a
concentration of 180μg/mL in KHB for 15 min, prior
to ischemia and reperfusion with KHB.

(4) HI 360: hearts were perfused with HI extract at a
concentration of 360μg/mL in KHB for 15 min, prior
to ischemia and reperfusion with KHB.

(5) HRS 90: hearts were perfused with HRS extract at a
concentration of 90μg/mL in KHB for 15 min, prior
to ischemia and reperfusion with KHB.

(6) HRS 180: hearts were perfused with HRS extract at a
concentration of 180μg/mL in KHB for 15 min, prior
to ischemia and reperfusion with KHB.

(7) HRS 360: hearts were perfused with HRS extract at a
concentration of 360μg/mL in KHB for 15 min, prior
to ischemia and reperfusion with KHB.
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Figure 1: Effect of HI (a) and HRS (b) on the time course of LVDP recovery after I/R expressed as a percentage of the baseline values.
∗P < .05, ∗∗P < .01, ∗∗∗P < .001 versus C. n = 7.
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Figure 2: Effect of HI (a) and HRS (b) on +dP/dtmax at 40 min of R. ∗P < .05, ∗∗P < .01, ∗∗∗P < .001, n = 7.

2.5. Quantification of Arrhythmias. Susceptibility to ventric-
ular arrhythmias was analyzed from the electrogram record-
ing during the first 10 min of R, as per the guidelines for
the study of ischemia- and reperfusion-induced arrhythmias,
known as the Lambeth conventions [25]. We focused on the
measurement of the total number of ventricular premature
beats (VPB), as well as on the total duration of the episodes
of ventricular tachycardia (VT), which was defined as a run
of four or more consecutive ectopic beats.

2.6. Infarct Size Determination. The measurement of infarct
size using triphenyl tetrazolium staining was essentially
identical to that described by Ravingerová et al. [26]. In
brief, at the end of R, the hearts were stained with 1%
2,3,5-triphenyl tetrazolium chloride (Sigma, USA) dissolved

in 0.1 M phosphate buffer (pH 7.4). The hearts were then
stored overnight in 10% neutral formaldehyde solution and
cut perpendicularly to the long axis of the ventricle into 1-
mm thick slices. The infarct area (IA) and the area at risk
(AR), which in the setting of global ischemia was the whole
mass of the left ventricle, were measured by a computerized
planimetric method. The infarct size was normalized to the
size of the area at risk (IA/AR).

2.7. Statistical Evaluation. The data were expressed as mean
± S.E.M. The statistical analysis was performed with one-way
ANOVA followed by Newman-Keuls multiple comparison
test or two-way ANOVA followed by Bonferroni post tests.
Differences were considered significant when P ≤ .05.
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Figure 3: Effect of HI on LVEDP at 40 min of R. ∗P < .05, ∗∗∗P <
.001, n = 7.

3. Results

3.1. Preischemia. After 15-min stabilization of all the hearts
with KHB, the perfusion was switched to the drug-
containing KHB solution. During perfusion with HI, we
observed a transient increase in LVDP that occurred during
perfusion with HI 90 (32%), HI 180 (52%), and HI 360
(75%) when compared with predrug values. Table 1 shows
that at the end of 15 min perfusion with HI, LVDP and HR
were similar to those of pre-drug values at all doses, while
CF was significantly increased by HI 180 (P < .05) and HI
360 (P < .01) when compared with pre-drug values (8.8 ±
0.3 mL/min).

When the hearts were perfused with HRS, a transient
increase in LVDP at HRS 180 (21%) and HRS 360 (55%) was
observed when compared with pre-drug values. At the end
of 15-min perfusion with HRS, there was only a tendency to
increase CF, and no significant changes in LVDP and HR at
all doses (Table 1).

3.2. Post-Ischemic Recovery of Function

3.2.1. LVDP. Figure 1(a) shows the time course of post-
ischemic recovery of LVDP. At 40 min of R, HI 180 and HI
360 significantly (P < .05 and P < .001, resp.) improved
the recovery of LVDP to 52.7 and 81.2%, respectively, when
compared with 19.4% in the nontreated C group. The
changes in the LVDP recovery induced by HI 90 were not
significant at any time point.

Figure 1(b) depicts the time course of post-ischemic
LVDP recovery in the presence of HRS. HRS 90 did not exert
any effect when compared with C. However, HRS 180 exerted
a more pronounced effect on recovery of LVDP and was
significant at few time points. HRS 360 showed a significant
recovery at all time points after 20 min of R. At the end of
40 min of I/R, both HRS 180 and HRS 360 induced almost
similar recovery which was significantly (P < .01) better
when compared with C.

3.2.2. +dP/dt. Figure 2(a) shows the recovery of +dP/dtmax

at 40 min of I/R. When compared with C, the recovery was

significant when the hearts were perfused with HI 90 (P <
.05), HI 180 (P < .001), and HI 360 (P < .001). The recovery
of +dP/dtmax was dose-dependent, that is, HI 360 induced a
significantly higher recovery (P < .001) than HI 90 and HI
180.

The recovery of +dP/dtmax was significantly (P < .01)
better when compared with C, when the hearts were perfused
with HRS 180 and HRS 360. HRS 180 and HRS 360 showed
a significantly stronger effect (P < .01) than HRS 90
(Figure 2(b)).

3.2.3. LVEDP. Figure 3 shows the recovery of LVEDP, which
was significantly lowered by all concentrations of HI, HI 90
(P < .05), HI 180 (P < .001), and HI 360 (P < .001).
Furthermore, perfusion with HI 360 led to a significantly
better recovery of LVEDP when compared with HI 90 and
HI 180 (P < .001 and P < .05, resp.).

HRS did not cause an improvement of LVEDP recovery
(in mmHg) at any concentration HI 90 (77.8 ± 3.5), HI 180
(68.2 ± 1.8), HI 360 (67.3 ± 2.4), in comparison to C (78.6
± 4.7).

3.2.4. Arrhythmias. HI exerted a significant antiarrhythmic
protection at HI 90, HI 180, and HI 360 manifested by a
reduced number of PVB (P < .05, P < .001, and P < .001,
resp.). The protection was also dose dependent (Figure 4(a)),
as perfusion with HI 360 resulted in a significantly lower
number of PVB than HI 90 (P < .001) and HI 180 (P <
.05), while HI 180 induced a significantly (P < .001) lower
number of PVB than HI 90. There was also a significantly
(P < .01) shorter duration of episodes of VT at HI 180 (9.8
± 3.0 s) and HI 360 (5.3 ± 2.8 s), but not at HI 90 (28.5 ±
9.7 s), when compared with 39 ± 6.5 s in C.

Interestingly, HRS 90, HRS 180, and HRS 360 signifi-
cantly (P < .001) reduced the number of PVB and decreased
the duration of VT (P < .05) to 19.8 ± 6.8, 13.7 ± 5.6, and
13.2 ± 5.1 s, respectively, when compared with nontreated C
(Figure 4(b)).

3.2.5. Infarct Size. The size of infarction (percentage of
the risk area; IA/AR) was significantly reduced only after
administration of HI 360 (20.3 ± 1.4%; P < .01) and not
at HI 90 (33.5 ± 5.3%) and HI 180 (30.1 ± 4.9%), when
compared with C (43.2 ± 2.4%).

The infarct size was significantly (P < .01) smaller at HRS
90 (29.4± 4.7%), HRS 180 (24.8± 3.6%), and HRS 360 (22.5
± 2.4%), when compared with C.

4. Discussion

The extracts of HI and HRS were tested for their potential
protective effect on I/R-induced lethal injury and functional
deterioration. The effects of the extracts were evaluated
before I and during R. The widely used model of 25-min
global I for optimum functional deterioration [27], followed
by 120 min of R for sufficient development of necrosis and
infarct size determination in the Langendorff setup [28–30]
was utilized.
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Table 1: Effect of 15-min perfusion with HI and HRS on hemodynamic parameters of the isolated rat heart. LVDP: left ventricular developed
pressure (LV systolic minus diastolic pressure); HR: heart rate; CF: coronary flow; BD: Before Drug (pre-drug values). ∗P < .05, ∗∗P < .01
versus BD (baseline).

BD
HI

BD
HRS

pre-ischemia pre-ischemia

HI 90 HI 180 HI 360 HRS 90 HRS 180 HRS 360

LVDP (mmHg) 89.5 ± 9.1 83.9 ± 2.2 84.8 ± 1.9 82.2 ± 7.5 83.9 ± 4.0 77.6 ± 3.5 82.6 ± 3.2 80.7 ± 2.8

HR (BPM) 302.6 ± 22.6 290.1 ± 31.5 286.6 ± 9.7 299.4 ± 33.1 305.8 ± 11.4 284.1 ± 9.3 290.0 ± 23.8 292.1 ± 13.8

CF (mL/min) 8.8 ± 0.3 14.1 ± 2.8 17.7 ± 2.5∗ 20.6 ± 2.7∗∗ 8.8 ± 0.4 10.5 ± 0.9 11.0 ± 2.2 12.4 ± 1.6
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Figure 4: Effect of HI (a) and HRS (b) on arrhythmias (PVB) during the first 10 min of R. ∗P < .05, ∗∗∗P < .001, n = 7.
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Figure 5: Potential mechanisms for the beneficial effects of HI and
HRS in I/R rat hearts.

HI had a dose-dependent effect on the recovery of LVDP
and +dP/dtmax. HRS had a similar effect on the recovery
of LVDP and +dP/dtmax at HI 180 as in HRS 360 and no
protection was observed at HRS 90, suggesting that HRS

180 is the minimum dose required to increase the recovery
of contractile function. The significantly better recovery of
LVEDP and attenuation of post-ischemic diastolic dysfunc-
tion at all three doses of HI infers that HI could improve
myocardial relaxation and may reduce the edema caused by
I/R injury [31]. In contrast, HRS did not have any significant
activity towards the relaxation of the cardiac muscle at any
dose.

HI could protect the heart from arrhythmias at all doses
in a dose-dependent manner manifested by a reduced num-
ber of PVB (extra heart beat caused by abnormal electrical
activity). In addition, a significantly lower total duration
of episodes of VT (rapid heart rhythm) was observed at
higher doses. Interestingly, HRS at all doses had a significant
protection against arrhythmias. The size of infarction (death
of a macroscopic area of cardiac tissue) was significantly
reduced by HI at the highest dose, while HRS significantly
lowered the infarct size at all the doses. In comparison, after
25-min I, HI exerted a higher protective activity against
functional deterioration and a moderate protection against
arrhythmias and infarct size, while HRS had a moderate
effect on functional recovery and a stronger protection in
terms of antiarrhythmic effect and infarct size limitation.

In two different studies recently performed in our
laboratory in a similar model, N-acetylcysteine (4 mM)
[27] and quercetin (15μM) [32] were found to protect the
myocardium against I/R. In the present study, the recovery
of various parameters in the presence of both the extracts
was comparable with that of N-acetylcysteine (LVDP—50%)
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and quercetin (LVDP—39.4%, +dP/dtmax—30.9%, IA/AR—
14.3%). At higher concentrations, the extracts showed a
better effect than quercetin [27, 32]. Functional deterioration
and severe arrhythmias upon reperfusion were found to be
related, to a certain extent, to an excessive generation of
reactive oxygen species (ROS) during prolonged I/R [33–
36]. ROS may also participate in I/R injury through the
depression of sarcoplasmic reticulum (SR) Ca2+ handling by
modulating gene expression in the I/R heart [37]. This has
been verified by the efficacy of antioxidants and scavengers
in the experimental settings of acute I/R [38–41]. Similarly,
pre-treatment with antioxidants, such as melatonin [38, 39]
and N-acetylcysteine [27] prior to I reduced the severity and
duration of R-induced ventricular arrhythmias in isolated
perfused rat hearts, attenuated calcium overload of the
heart [40, 42], and improved post-ischemic recovery of the
contractile function [38].

The previously reported antioxidant effect of HI [5, 43]
may be associated with tannins, one of the main constituents
[44]. Likewise, saponins have also been shown to have
beneficial effects on cardiovascular diseases [45]. Flavonoids
produce vasodilation by regulating endothelial nitric oxide
(NO) production [46] and interaction with ion channels
[47]. Moreover, flavonoids are known to protect the I/R-
induced myocardial injury by their multifaceted properties,
such as antioxidant, antiinflammatory, vasodilatory, and
antiplatelet aggregation [47]. Therefore, it is conceivable
that the cardioprotective effect of HI may be related to the
combined effects of saponins, tannins, and flavonoids. HRS
has been shown to enhance the endogenous antioxidant
activity and protect the heart from isoproterenol-induced
injury [48]. Quercetin has been shown to reduce blood
pressure and exhibit endothelium-dependent vasodilation by
enhancing eNOS activity [46, 49–51]. In addition, cyanidin
and quercetin are known to possess antioxidant activity
[48, 49]. Kim et al. [52] have shown that kaempferol pro-
tected the cardiac muscle cells against I/R-induced damage
by increasing the expression of antiapoptotic protein and
downregulating the expression of endoplasmic reticulum
stress proteins. Thus, the combined effect of constituents of
HRS, such as quercetin, cyanidin, and kaempferol might be
responsible for the beneficial effects (Figure 5).

In conclusion, HI might cause vasodilation, positive
inotropic effect, and cardioprotection, while HRS might
cause these effects at higher concentrations. In addition,
based on the drug effects observed at lower doses, it could
be suggested that the suppression of arrhythmias results in a
smaller size of infarction than that achieved by the protection
against contractile dysfunction. However, further study is
required to explore the in vivo activity of both the plants.
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